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Abstract: Background: Gentamicin (GM) administration is associated with decreased
metabolism, increased oxidative stress, and induction of nephrotoxicity. Sambucus nigra
L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-
inflammatory potential. Objectives: The present study aimed to investigate the nephropro-
tective and anti-inflammatory potential of lyophilized Sambucus nigra fruit extract (S. nigra
extract) to reduce acute oxidative stress and residual toxicity of GM in a 7-day experimental
model in Balb/c rodents. Methods: The S. nigra extract was lyophilized (300 rpm; 10 min;
−45 ◦C) to improve pharmacological properties. Balb/c mice were divided into four (n = 6)
groups: controls; S. nigra extract per os (120 mg kg−1 day−1 bw); GM (200 mg kg−1 day−1

bw) (4); and GM + S. nigra therapy. The activities of antioxidant and renal enzymes, cy-
tokines, and levels of oxidative stress biomarkers—Hydroxiproline, CysC, GST, KIM-1,
PGC-1α, MDA, GSPx—were analyzed by ELISA tests. The ROS and RNS levels, as well as
5-MSL-protein oxidation, were measured by EPR spectroscopy. Results: The antioxidant-
protective effect of S. nigra extract (120 mg kg−1) was demonstrated by reduced MDA, ROS,
and RNS and increased activation of endogenous enzymes. Furthermore, S. nigra extract
significantly reduced the expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, and KIM-1 and
regulated collagen/protein (PGC-1α and albumin) deposition in renal tissues. Conclusions:
Histological evaluation confirmed that S. nigra (120 mg kg−1) attenuated renal dysfunction
and structural damage by modulating oxidative stress and acute inflammation and could
be used as an anti-fibrotic alternative in GM nephrotoxicity.
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1. Introduction
Gentamicin (GM), as a broad-spectrum aminoglycoside antibiotic, has marked antibi-

otic activity against aerobic/Gram-negative bacterial infections. Clinically, GM is used in
the systemic treatment of septicemia, nosocomial infections of the respiratory tract, urinary
tract, and intra-abdominal infections [1]. Despite its application, GM is toxic due to reduced
metabolism and difficulty in excretion with normal renal function [1,2]. The cellular toxicity
pathways by which GM treatment leads to cellular destruction is concentration in the Golgi
complex, followed by concentrations in the endosomal and lysosomal vacuoles of the prox-
imal tubular cells of the kidney, leading to inflammatory and vascular responses, and acute
tubular necrosis [1,2]. Different hypotheses indicate that such toxicity appears to be induced
by abnormal vesicle fusion, reduced protein synthesis, and increased mitochondrial toxicity,
followed by an increased imbalance of aerobic oxidative stress (OS) [3]. Directly or indi-
rectly, the cytoplasmic GM accumulation leads to OS induction, followed by mitochondrial
activity reduction and apoptotic activation [3]. GM therapy causes OS by increasing the
production of reactive oxygen and nitrogen species (ROS/RNS), inflammation, and fibro-
sis [3,4]. The short-lived ROS (superoxide ion (•O2

−), hydrogen peroxide (H2O2)), RNS
(nitric oxide (•NO), peroxynitrite (ONOO−)), and the oxidized lipids as redox signaling
agents generated under the cytokines and enzymes control (nitric oxide synthase, lipoxy-
genases and cyclooxygenases) [4] are directly involved in the metabolic regulation and
adaptation to xenobiotic stress [5]. Afterward, in healthy cells, the redox balance is rapidly
reduced by enzymatic and non-enzymatic systems (glutathione (GSH), melatonin, uric acid,
bilirubin, and vitamin C) by natural ferro-statins, such as vitamin E, and by plant polyphe-
nols [6–8]. The inability of the intracellular antioxidants to deal with oxidative disturbances
leads to free radical’s induction and oxidative cascade signaling [7,8] and is involved in
renal, cardiovascular, hematological, and inflammatory pathogenesis [8–12]. Moreover,
GM therapy reduces enzyme efficacy, impairs lipid peroxidation [10], and induces renal
genotoxicity by incensement of ROS/RNS [10].

Overall, plant compounds with antioxidant, anti-inflammatory, and radical-scavenging
properties play a significant protective role in direct renal protection and the ability to
ameliorate GM-induced nephrotoxicity [13–15]. Recently, there has been much interest in
investigating the effects of plants containing polyphenols and quercetin-like flavonoids as
protectors of inflammatory activation. The polyphenols and flavonoids reduce ROS and
RNS production as controlled oxidative stress changes in acute kidney injury [16–19].

Sambucus nigra (S. nigra, black elderberry) is an active plant with antioxidant, antibac-
terial, and antitumor properties [20–22]. Traditionally, in the Balkans, the most popular is
the usage of S. nigra fruits, with high content of flavonoids (rutin, quercetin-3-O-rutinoside,
kaempferol-3-O-rutinoside), anthocyanins, phytosterols, triterpenes, tannins, glycosides,
p-coumaric acid, and lectins, which determine the anti-inflammatory and immunomod-
ulatory promoting activities [23–26]. The antioxidant properties of S. nigra extract have
been verified to primarily depend on the presence of rutin, quercetin-3-O-rutinoside, an-
thocyanins, and other phenolic compounds. Furthermore, the presence of flavonoids and
phenolic compounds in S. nigra helps inhibit acute phase inflammation, modulating renal
toxicity through increased enzymatic protection and alleviating ROS and RNS accumula-
tion [23–26]. In addition, it has been proven that ROS regulation by S. nigra is linked to the
prevention of GM-induced renal intoxication and necrosis [25–28]. Previous research has
shown that rutin and epigallocatechin contending S. nigra extracts reduced lipid peroxida-
tion [10,11,26]. Interestingly, it has been demonstrated that rutin contending S. nigra extracts
ameliorate nitric oxide (NO2) and nitric radicals (•NO) and diminish pro-inflammatory
cytokine signaling as tumor necrosis factor (TNF) and interleukins IL-1β and IL-6 [29]. The
experimental research on cell cultures and animal models shows that S. nigra fruit extracts
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promoted the increased ferocytosis of apoptotic neutrophils by increasing IL-10, reduced
TNF and heme oxygenase-1, i.e., modulated redox balance by stimulating the antioxidant
and enzymatic production [26,29]. Recently, it has been shown that Sambucus sp. reduced
OS and inflammatory stimulated preadipocytes and macrophages by cyto-protective [26]
and geno-protective properties.

Numerous components of S. nigra fruits have been identified, but their biological
activity is still not fully understood. The use of dietary supplements and preparations of S.
nigra fruits is accompanied by a lack of complete information on the composition, dosage,
anti-inflammatory and protective activity, and compatibility with other preparations. Ex-
tracts of S. nigra fruits have not been extensively studied for their radical-modulating and
anti-inflammatory effects in vivo in animal models.

Therefore, we investigated the cytoprotective and antioxidant therapeutic effects of a
lyophilized S. nigra fruit extract on GM-induced nephrotoxicity in a 7-day experimental
rodent model. Furthermore, we focused on the possible oxidative mechanisms of action of S.
nigra-lyophilized extract against acute renal toxicity. We suggest that the ameliorating effect
of the lyophilized extract of S. nigra is focused on protective action and direct regulation
of ROS, NO• and •O2

− concentrations, redox–homeostatic albumin imbalance, and anti-
inflammatory activity in acute GM-nephrotoxicity.

2. Results
2.1. Phenolics Quantitative Evaluation and Antioxidant Capacity in S. nigra-Lyophilized Extract

The HPLC–DAD analysis showed that rutin (782.6 ± 0.68 µg g−1) was the domi-
nant phenolic component in S. nigra-lyophilized extract, followed by epigallocatechin
(314.15 ± 0.59 µg g−1), myricetin (136.06 ± 0.84 µg g−1), quercetin (37.9 ± 1.27 µg g−1),
and other compounds in low concentrations (Table 1).

In addition to Table 1, Figure 1a,b presents the HPLC–DAD chromatograms of the
analyzed S. nigra extract, compared to standards.
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treated with S. nigra extract (n = 300), the aberrant cell percentage was two-fold reduced 
(0.7%) compared to untreated cells (2.0%) (Cramer’s V = 0.058; p < 0.2). A non-aberrant 

Figure 1. HPLC–DAD chromatograms of the S. nigra extract. The reference standards ((+)-epicatechin
gallate, (-)-catechin, (-) epigallocatechin, rutin, quercetin, myricetin, kaempferol, gallic, and vanillic
acids) and HPLC chromatogram, where (a) catechin/epigallocatechin and (b) rutin, myricetin,
and quercetin.
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Table 1. Bioactive phenolic constituents identified in lyophilized extract of S. nigra by high-performance
liquid chromatography with diode array detector (HPLC–DAD; G1315B).

Compounds Concentration
(µg/g)

λmax R
(nm)

epigallocatechin 314.15 ± 0.59 236.272

rutin 782.6 ± 0.68 255.356

myricetin 136.06 ± 0.84 255.374

quercetin 37.9 ± 1.27 256.372
The determination was performed at 278 nm–368 nm wavelength, with a C18 reversed-phase column (Puro-
spher star, Hiber RT 125-4; RP18, Bulgaria), and 9 components were used: (+)-epicatechin gallate, (-)-catechin,
(-) epigallocatechin; rutin, quercetin, myricetin, kaempferol, gallic and vanillic acids.

2.2. S. nigra-Lyophilized Extract Increased Antioxidant, Anticlastogenic, and Cytoprotective Effects

In order to assess the DPPH/R scavenging, the elevated 0.0691 µg mL−1 (87.59 ± 0.037%)
of S. nigra extract confirms increased antioxidant activity, compared to other published
results: 0.049 µg mL−1 (62.56 ± 1.12%) scavenging activity of S. nigra fruits methanolic
extract, and 0.051 µg mL−1 (65.965 ± 0.003%) for analyzed fruit samples. Our lyophilized
S. nigra extract showed a ~23% increase in scavenging potential (Figure 2).
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Figure 2. DPPH (80 µM) radical scavenging capacities of S. nigra-lyophilized extract and positive
controls—rutin and quercetin. DPPH-H/R generation started immediately at 23 ◦C, and the EPR
processing was performed using WIN-EPR SimFonia 1.2/6130860 software. One-way ANOVA with
Student’s t-test was used to determine statistically significant differences, at p < 0.002, between groups.
The results were present in arbitrary units and recalculated as µg/DPPH radicals possible to be
neutralized by 1 mL extract; * vs. DPPH; ** vs. 782.60 ppm rutin.

The chromosomal aberrations frequency shows the cytoprotective (anticlastogenic)
effect of S. nigra-lyophilized extract in lymphocyte cultures (Figure 3). In the lymphocytes
treated with S. nigra extract (n = 300), the aberrant cell percentage was two-fold reduced
(0.7%) compared to untreated cells (2.0%) (Cramer’s V = 0.058; p < 0.2). A non-aberrant
lymphocyte cultures frequency treated with S. nigra was 99.3% vs. untreated 98.0% lym-
phocytes. Despite the weak relationship between the factor “type of lymphocyte treatment”
and aberrant cells between the two studied groups, no statistically significant difference
was found (p = 0.155; p > 0.05). It should be noted that the 4 µL mL−1 S. nigra administration
does not display clastogenic activity and protect against oxidative stress (Figure 3).
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Figure 3. The cytoprotective effect of S. nigra-lyophilized extract tracked against aberrant cells and
aberrations. Lymphocyte cultures were prepared from peripheral vein blood in heparin of healthy,
nonsmoking, non-drinking (female), and drug-free donors after signing written informed consent
forms. The aberrance and aberrant cell degrees were processed by one-way ANOVA followed by
χ2-Cramer’s V test (GraphPadPrism 6/Windows; GraphPad Software, Inc., San Diego, CA, USA).
Data are presented as mean ± SD; p < 0.05 was considered statistically significant.

2.3. S. nigra Extract Attenuated GM-Induced Kidney Hypertrophy

Figure 4 shows the S. nigra effect on general physical condition, weight gain, and
relative kidney weight in BALB/c mice after a 10-day GM induction. Daily GM intoxication
resulted in a significant reduction in body weight (~24.63%, p < 0.05, t-test) and characteris-
tic renal hypertrophy, as assessed by a two-fold increase in kidney weight (0.49 ± 0.02 g
vs. 0.25 ± 0.01 g vs. controls). Interestingly, GM-treated mice receiving a daily protective
dose of 120 mg kg−1 S. nigra showed a significant increase in body weight. S. nigra extract
stimulation improved renal hypertrophy and restored kidney function compared to GM
administration, observable by the kidney weight decrease (0.31 ± 0.03 g, p < 0.05).
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Figure 4. Body weight increment (BW, (A)) and relative kidney weight (KW, (B)) were measured on the
10th day of this experiment; controls (standard diet), GM only, S. nigra only, GM + S. nigra combined
therapy. The quantitative data were expressed as the means ± SD (n = 6). * p < 0.001 vs. controls;
** p < 0.05 vs. GM group.

2.4. S. nigra Extract Ameliorated Renal Histopathological Changes

Significantly pronounced degenerative, hypermeritic, inflammatory, and vascular
changes in renal tissue were registered in the GM group. Pathomorphological renal changes
were not observed in the controls, S. nigra alone, GM + S. nigra combined therapy (Table 2).
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Table 2. Protective S. nigra effect on acute GM-induced alterations in renal structures.

Controls GM S. nigra GM + S. nigra

Brush borders 0 2 0 0

TBM disruption 0 0 0 0

Necrosis 0 0 0 0

Casts 0 0 0 0

Inflammation 0 2 0 0/1

Hyperemia 0 1 0 0
Comparative pathomorphological changes in experimental groups; nontreated controls; S. nigra only; GM only; GM + S.
nigra combined therapy. Legend: 0—no changes; 1—weak changes; 2—moderate changes; 3—strong changes.

2.5. S. nigra Extract Ameliorated Renal Fibrosis and Reducde MCs Density and CFT

The beneficial S. nigra role in GM-induced renal fibrosis reduction by influencing MCs
density was present. The kidney sections from controls, GM, and GM + S. nigra-treated mice
by both toluidine-blue and Azan staining techniques were examined to determine whether
GM-induced kidney fibrosis was reduced after S. nigra treatment (Table 3). Significant
differences in CFT vs. controls and GM + S. nigra mice were not detected.

Table 3. Protective S. nigra effect on GM-induced fibrosis on renal structures in controls, GM only,
and GM + S. nigra combined therapy. MCs number per a microscopic field and CFT are given as
mean ± SD (n = 6) in renal cortex, upper, and inner medulla of the controls, GM only, and GM + S.
nigra-treated mice. Collagen fibers and bundles were thicker in GM only compared to GM + S. nigra
and controls (in cortex p < 0.0001; in upper medulla p < 0.01).

Parameters Controls GM S. nigra

MCs
in cortex 5.67 ± 0.18, A4/B4 27.64 ± 0.82, C4 13.61 ± 0.29

in upper medulla 1.55 ± 0.08, A4/B0 8.50 ± 0.17, C4 2.94 ± 0.12
in inner medulla -, A4/B0 4.03 ± 0.15, C4 -

CFT
in cortex 0.31 ± 0.01, A4/B0 6.02 ± 0.54, C4 1.14 ± 0.04

in upper medulla 1.0 ± 0.01, A2/B0 2.26 ± 0.05, C2 1.11 ± 0.01
in inner medulla 0.32 ± 0.01, - 0.5 ± 0.01, - 0.35 ± 0.01

Legend: A—statistically significant difference between controls and GM group; B—statistically significant
difference between controls and S. nigra + GM; C—statistically significant difference between GM only and
GM + S. nigra therapy; (-) mast cells absence; 1, 2, 3, 4 express the p-values (p < 0.005, p < 0.01, p < 0.001, p < 0.0001,
respectively).

Metachromatic MC localization was found in the renal corpuscles and between the
proximal and distal convoluted tubules on nephron in the renal cortex. Single MCs were
estimated in glomeruli and between nephron tubules in controls (Figure 5’).

In GM + S. nigra group, MCs densities in mentioned renal structures were not signif-
icantly higher, close to controls, and significantly lower in the GM group. In the upper
medulla, the MC number in the GM group was four-fold higher compared to the controls
and GM + S. nigra group. It is important to note that there was not a statistical significance
in MCs density between controls and GM + S. nigra therapy. In the upper medulla of all
treated groups, MCs were located between nephron tubules and collecting ducts. MCs
were present in the GM group but absent in controls and GM + S. nigra therapy. Therefore,
S. nigra administration caused a significant MC decrease in the renal cortex and medulla vs.
GM group. Azan staining allowed for the detection of CFT and bundles in the renal cortex
and medulla in order to define collagen deposition (Figure 5”).
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The micro-morphometric study was used to estimate the thickness of collagen fibers
and bundles in the renal cortex and medulla. In the renal cortex and upper medulla of the
GM group, collagen fibers and bundles between nephron tubules were significantly thicker
vs. controls and GM + S. nigra combined therapy.

2.6. S. nigra Extract Ameliorated Renal Hydroxyproline Content and Protein Oxidation

Acute GM-nephrotoxicity significantly increased HYP content compared to controls
(875.18 ± 111.4 mg g−1 vs. 425.71 ± 72.9 mg g−1, t-test, p < 0.05). Figure 6A presents
a protective S. nigra effect against GM renal injury. The hydroxyproline content was
statistically significantly decreased in the GM + S. nigra group (875.18 ± 111.4 mg g−1 vs.
595.09 ± 88.1 mg g−1 tissue, p < 0.005). The 10 days of protection with S. nigra extract
statistically insignificant reduced collagen deposition versus controls (401.22 ± 35.4 mg g−1

vs. 425.71 ± 72.9 mg g−1).
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Arrows—MCs between nephron tubules; arrowheads—MCs in glomerulus (Bar × 50 µm). Kidney’s 
cortex (5”) (5”A,5”D,5”G) and upper (5”B,5”E,5”H) and inner (5”C,5”F,5”I) medulla sections 
obtained from mice and stained by Azan technique. Groups: (5”A,5”B,5”C) mice with GM-induced 
fibrosis and intensive blue staining and large collagen deposition (collagen fibers and bundles); 
(5”B) GM-treated group and subsequent treatment with S. nigra—thinner collagen fibers are present 
than in GM group; (5”C) controls with delicate (thinnest) collagen fibers comparing to GM only and 
GM + S. nigra therapy (Bar × 200 µm). Arrows—collagen fibers and bundles between nephron 
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processed by one-way ANOVA followed by Tukey Kramer’s test (GraphPadPrism 6 for Windows; 
GraphPad Software, Inc., USA), as mean ± SD; p < 0.05 was considered statistically significant. 
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(875.18 ± 111.4 mg g−1 vs. 425.71 ± 72.9 mg g−1, t-test, p < 0.05). Figure 6A presents a protec-
tive S. nigra effect against GM renal injury. The hydroxyproline content was statistically 
significantly decreased in the GM + S. nigra group (875.18 ± 111.4 mg g−1 vs. 595.09 ± 88.1 
mg g−1 tissue, p < 0.005). The 10 days of protection with S. nigra extract statistically insig-
nificant reduced collagen deposition versus controls (401.22 ± 35.4 mg g−1 vs. 425.71 ± 72.9 
mg g−1). 

Figure 5. Metachromatic mast cells (5’) in renal cortex (5’A,5’C,5’E) and upper medulla (5’B,5’D,5’F):
(5’A,5’B) in GM treated mice; (5’C,5’D) in GM + S. nigra mice; ((5’E,5’F)-MCs absence) in controls.
Arrows—MCs between nephron tubules; arrowheads—MCs in glomerulus (Bar × 50 µm). Kidney’s
cortex (5”) (5”A,5”D,5”G) and upper (5”B,5”E,5”H) and inner (5”C,5”F,5”I) medulla sections obtained
from mice and stained by Azan technique. Groups: (5”A,5”B,5”C) mice with GM-induced fibrosis
and intensive blue staining and large collagen deposition (collagen fibers and bundles); (5”B) GM-
treated group and subsequent treatment with S. nigra—thinner collagen fibers are present than
in GM group; (5”C) controls with delicate (thinnest) collagen fibers comparing to GM only and
GM + S. nigra therapy (Bar × 200 µm). Arrows—collagen fibers and bundles between nephron
tubules; arrowheads—collagen fibers and bundles around renal corpuscle capsule. The data were
processed by one-way ANOVA followed by Tukey Kramer’s test (GraphPadPrism 6 for Windows;
GraphPad Software, Inc., USA), as mean ± SD; p < 0.05 was considered statistically significant.

In vivo, remodeled protein oxidation was determined after 5-MSL-albumin/protein
conjugation (Figure 6B). Compared with controls, renal protein expression was signifi-
cantly increased (0.361 ± 0.04 vs. 1.002 ± 0.52 a.u., p < 0.005, t-test) after GM intoxication.
S. nigra treatment significantly reduced GM-induced kidney protein dysregulation com-
pared to the GM group (0.409 ± 0.07 vs. 1.002 ± 0.52 a.u., p < 0.002, t-test). Notably, S. nigra
administration resulted in inhibition of renal protein expression and reduced OS, with a
value comparable to controls (0.41 ± 0.03 vs. 0.361 ± 0.04 a.u., p < 0.05, t-test).
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2.7. S. nigra Extract Ameliorated Renal and Serum Injures

Data analysis of renal and blood concentrations of KIM-1, cystatin C, GST, gamma-
GT, Cre, and urea in control, S. nigra, GM + S. nigra groups were performed to detect the
S. nigra extract ability to protect against acute kidney injury (Figure 7). GM-induced tubular
injury and nephrotoxicity resulted in a significant increase in renal KIM-1 expression vs.
controls (6.73 ± 0.21 ng/mL vs. 2.56 ± 0.1 ng/mL, t-test, p < 0.05), the S. nigra stimulation
(6.73 ± 0.17 ng/mL vs. 2.61 ± 0.09 ng/mL, t-test, p < 0.005), and the GM + S. nigra combina-
tion (6.73 ± 0.21 ng/mL vs. 3.86 ± 0.37 ng/mL, t-test, p < 0.05) (Figure 7A). No significant
differences were reported between the controls and after S. nigra extract protection.

GM treatment vs. controls had statistically significantly increased renal Cys C expres-
sion (0.866 ± 0.07 ng/mL vs. 0.301 ± 0.016 ng/mL, t-test, p < 0.05; Figure 7B) and increased
GST (892.12 ± 55.14 nmol/gPr vs. 512.3 ± 58.59 nmol/gPr, t-test, p < 0.001; Figure 7C).
Also, an incensement was measured in serum Cre (1.86 ± 0.23 ng/dL vs. 0.73 ± 0.1 ng/dL,
p < 0.005), urea (104.38 ± 22.35 mg/dL vs. 64.82 ± 15.35 mg/dL, p < 0.005) (Figure 7D,E),
and gamma-GT (2.11 ± 0.09 ng/mL vs. 1.43 ± 0.012 ng/mL, p < 0.005, Figure 7F), confirm-
ing acute renal injuries, oxidative changes, and neutrophil cells death.

Renal enzyme activity in the GM-administrated group was statistically significantly
higher versus GM + S. nigra combined therapy. The induction of Cys C (0.866 ± 0.07 ng/mL
vs. 0.67 ± 0.04 ng/mL, t-test, p < 0.05, Figure 7B), GST (892.12 ± 55.14 nmol/gPr
vs. 647 ± 33.59 nmol/gPr, t-test, p < 0.005, Figure 7C), sera creatinine (1.86 ± 0.23 vs.
0.84 ± 0.3, p < 0.005, Figure 7D), sera urea (104.38 ± 22.35 vs. 76.85 ± 11.44, p < 0.05;
Figure 7E), and sera gamma-GT (2.11 ± 0.09 vs. 1.75 ± 0.04, p < 0.05, Figure 7F) were
significantly reduced in renal tissue and sera after S. nigra-lyophilized extract protec-
tion. Significant enzymatic activity was not reported between the controls and S. nigra-
stimulated animals.
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Figure 7. The S. nigra extract effects on GM-induced nephritic and serum injury changes in (A) kidney
injury molecule-1 (KIM-1) (ng/mL), (B) Cisplatin C (ng/mL), (C) glutathione-S-transferase (GST,
nmol/gPr), (D) sera creatinine (ng/dL), (E) sera urea (mg/dL), and (F) sera gamma-glutamyl-
transpeptidase levels (gamma-GT, ng/mL). The results are presented as mean ± SD (n = 6). One-
way ANOVA with multiple comparisons using Student’s t-test was used to determine significant
differences in relation to (*) p < 0.05 vs. controls, (**) p < 0.005 vs. GM-treated mice.

2.8. S. nigra Extract Normalize Renal Enzyme Activities and Ameliorated Lipid Peroxidation

Next, we explored the effects of GM administration on the renal enzymatic activities.
The renal SOD (1.291 ± 0.35 vs. 4.74 ± 0.86 IU/gHb, p < 0.005; Figure 8A), CAT (1.62 ± 0.13
vs. 3.78 ± 0.05 IU/gPr, p < 0.003; Figure 8B), GPx1 (18.9 9 ± 2.86 vs. 68.84 ± 5.39 IU/gPr,
p < 0.05, Figure 8C), and GSH (21.99 ± 3.22 vs. 59.85 ± 2.376 IU/gPr, p < 0.04, Figure 8D)
significantly decreased versus controls, which indicates an impairment in kidney func-
tions. However, GM considerably increased renal MDA concentration (5.87 ± 0.9 vs.
3.09 ± 0.4 µmol/mL, p < 0.05; Figure 8E) versus controls.
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2.9. S. nigra Extract Ameliorated ROS, NO• и •O2- Stress Levels 

Figure 8. The S. nigra extract effects on GM-induced nephritic antioxidant enzyme activities and
lipid peroxidation changes in (A) superoxidedismutase (SOD, IU/gPr), (B) catalase (CAT, IU/gPr),
(C) glutathioneperoxidase-1 (GPx1, IU/gPr), (D) reduced glutathione (GSH; IU/gPr), and (E) malon-
dialdehyde (MDA, µmol/mL). The results are presented as mean ± SD (n = 6). One-way ANOVA
with multiple comparisons using Student’s t-test was used to determine significant differences in
relation to (*) p < 0.05 vs. controls, (**) p < 0.005 vs. GM-treated mice.

Conversely, the S. nigra co-administration at 120 mg kg−1 showed significant GM
inhibition and substantial incensement in the enzymatic defense by OS amelioration in
kidneys. Markedly, induced activities of SOD (1.291 ± 0.35 vs. 3.81 ± 0.41 IU/gHb,
p < 0.05), CAT (1.62 ± 0.13 vs. 3.17 ± 0, 19 IU/gPr, p < 0.05), GPx1 (18.99 ± 2.86 vs.
50.75 ± 3.39 IU/gPr, p < 0.05), GSH (21.99 ± 3.22 vs. 46.97 ± 5.39, p < 0.001), and MDA
(5.87 ± 0.9 vs. 4.041 ± 0.12 µmol/mL, p < 0.05) were registered vs. controls (Figure 8A–D).

2.9. S. nigra Extract Ameliorated ROS, NO• u •O2
− Stress Levels

To confirm the protective role of S. nigra extracts against GM-induced renal oxida-
tive stress, the redox-modulated activity was investigated. Significantly, GM treatment
increased ROS (2.77 ± 0.35 vs. 0.89 ± 0.06 a.u., p < 0.005; Figure 9A), NO• (55.61 ± 5.35 vs.
14.88 ± 1.41 a.u., p < 0.002; Figure 9B), and •O2

− levels (3.4 1 ± 0.72 vs. 0.97 ± 0.09 a.u.,
p < 0.005, Figure 9C) in the renal cortex compared to controls. The highest protection of S. ni-
gra extract was observed in the renal cortical ROS reduction (2.77 ± 0.35 vs. 1.36 ± 0.11 a.u.,
p < 0.05) and in NO• (55.61 ± 5.35 vs. 33.7 ± 2.09 a.u., p < 0.002) and •O2

− (3.41 ± 0.72
vs. 1.994 ± 0.12 a.u., p < 0.005) concentrations. These findings highlight the S. nigra
protective effects on renal OS compared to GM-treated mice. Interestingly, S. nigra ex-
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tract co-administration alleviated renal cortical oxidative stress and promoted exogenous–
endogenous enzymatic defense by restoring the redox–homeostatic imbalance versus the
GM-intoxicated group.
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Furthermore, we assessed the influence of S. nigra on GM-induced inflammation. The 
oxidative stress promotes renal damage and provokes fibrotic processes and loss of renal 
function by concentration-inactivating collagen deposition (PGC-1α) and inflammatory 
expression (Figure 10A–F). Significantly, GM administration reduced PGC-1α (65%, p < 
0.001; Figure 10A) deposition and induced the release of inflammatory IL-1β (78.3%), IL-
6 (27.4%), IL-10 (29.5%), TNF-α (55.3%), and IFN-γ (41.9%) versus controls (p < 0.005). 

Figure 9. The S. nigra extract effects on GM-induced nephrotoxicity and oxidative changes in (A)
ROS production, (B) nitric radicals (NO•), and (C) superoxide anion radical (•O2-). The radicals were
scavenged in triplicate by EPR spectroscopy using Win-EPR and Sim-Fonia software and expressed
in arbitrary units (a.u.). The results are presented as mean ± SD (n = 6). One-way ANOVA with
Student’s t-test was used to determine statistically significant differences in relation to * p < 0.05 vs.
controls and ** p < 0.005 vs. GM-treated mice.

2.10. S. nigra Extract Protected the Kidney Against GM-Induced Acute Inflammation

Furthermore, we assessed the influence of S. nigra on GM-induced inflammation. The
oxidative stress promotes renal damage and provokes fibrotic processes and loss of renal
function by concentration-inactivating collagen deposition (PGC-1α) and inflammatory ex-
pression (Figure 10A–F). Significantly, GM administration reduced PGC-1α (65%, p < 0.001;
Figure 10A) deposition and induced the release of inflammatory IL-1β (78.3%), IL-6 (27.4%),
IL-10 (29.5%), TNF-α (55.3%), and IFN-γ (41.9%) versus controls (p < 0.005).

S. nigra extract co-administration potentially rescues renal cells and modulates cellular
response by increasing PGC-1α deposition and suppressing inflammation induced by GM
intoxication (p < 0.01). Furthermore, S. nigra extract stimulates renal adaptive immunity
and regulates the inflammatory response, almost comparable to controls (p < 0.05).

2.11. Correlation Dependences Between Parameters for Protective Properties of S. nigra After
GM Intoxication

The results of the established correlations between collagen deposition, lipid peroxida-
tion, cytokine expression and markers of oxidative stress in relation to the S. nigra extract
action of against GM nephrotoxicity are presented in Table 4.

Table 4. Correlation dependences between parameters for protective properties of S. nigra extract
after GM intoxication.

Parameters r p

HYP vs. 5-MSL 0.71 0.05
vs. MDA 0.63 0.003

KIM-1 vs. Cys C 0.78 0.001
vs. Cre 0.9 0.005
vs. ROS 0.81 0.001
vs. IL-6 0.71 0.001
vs. NO• 0.91 0.001
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Table 4. Cont.

Parameters r p

GSH vs. KIM-1 0.73 0.002
vs. PGC-1α 0.800 0.04
vs. 5-MSL 0.81 0.002

vs. gamma-GT 0.68 0.002

IL-1β vs. TNF-γ 0.76 0.005
ROS vs. TNF-γ 0.85 0.001

MDA vs. NO• 0.86 0.005
PGC-1α vs. 5-MSL 0.91 0.002

The results are presented as mean ± SD (n = 6). One-way ANOVA test was used to determine statistically
significant differences.
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Figure 10. The S. nigra extract effects on GM-induced nephrotoxicity and pro-inflammatory changes
in (A) PGC-1 (pg mL−1), (B) IL-1β (pg mL−1), (C) IL-6 (pg mL−1), (D) IL-10 (pg mL−1), (E) TNF-α
(pg mL−1), and (F) IFN-γ (pg mL−1). The results are presented as mean ± SD (n = 6). One-way
ANOVA with Student’s t-test was used to determine statistically significant differences in relation to
(*) p < 0.05 vs. controls and (**) p < 0.001 vs. GM-treated mice.

3. Discussion
Receptor-mediated endocytosis via the multi-ligand receptors megalin and tubu-

lin promotes GM deposition in renal proximal tubules, altering lysosomal aggregation,
phospholipid metabolism, and mitochondrial toxicity [3,13], thus promoting ROS, RNS ac-
cumulation, and oxidative stress [30]. Aberrant mitochondrial modulation of ROS and RNS
by metabolic, hormonal, and pro-inflammatory factors, as well as endogenous–exogenous
antioxidant deactivation [6,7], caused OS and organ changes [31]. GM stimulates the mito-
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chondrial respiratory chain to accumulate H2O2 synthesis, i.e., •O2−, 1O2, HO•, OH–, NO•,
and peroxy radicals. GM-induced acute renal inflammation and accumulation of abnormal-
ities in the renal tubules and glomeruli is a consequence of the activation of inflammatory
cells and physiologically impaired redox homeostasis, which predisposes to increased lipid
peroxidation [7], chromosomal aberrations, and protein denaturation [31–33].

Biologically active flavonoids and polyphenols support acute nephron protection due
to antioxidant and anti-inflammatory effects and decreased H2O2-mediated Fe2+/Fe3+

mobilization from mitochondria [7,24,32,33]. Based on these facts, we aimed to establish
the protective effect of S. nigra extract against acute kidney injury and renal lesions directly
caused by GM therapy. In addition, we investigated the S. nigra antioxidant regulative
mechanism by maintaining the redox–homeostatic imbalance and cytoprotective effect,
leading to protein oxidation remodeling and cytokine inflammation.

Ultrasonic extraction at 80 kHz improved the extraction yields of rutin (8754 µg mL−1)
and epigallocatechin (3514 µg mL−1) (in the maximum amount) [12], the main flavonoids in
used S. nigra extract. Rutin, epigallocatechin, and myrcetin flavonoids scavenged ROS and
RNS and powerfully modulated oxidative stress changes under GM accumulation [24,31].
Previous studies have demonstrated significant amounts of polyphenolic metabolites de-
posited in renal tissue after a polyphenolic diet after GM-nephrotoxicity [34–37]. Rutin and
epigallocatechin-rich extracts obtained from Opuntia ficus Indica, Morus alba L., and S. nigra
had a nephroprotective effect [38–41]. The antioxidant capacity, recording 86.5 ± 0.037%
ROS-inactivation in vitro, is probably due to the high rutin > epigallocatechin > myricetin >
quercetin amounts. The relationship between phenolic content and antioxidant activity of
S. nigra extract [24] was confirmed. Putri et al. [42] provided evidence that S. nigra extracts
were characterized by antioxidant activity, reaching 89.25% concerning DPPH radicals
responsible for the H2O2 detoxification and renal function improvement [43].

The cytoprotective efficacy test, which directly assesses the inhibition of genotoxi-
city, mutagenesis, and carcinogenesis by flavonoid-containing plants [44], attracted our
attention. S. nigra extract (4 µL mL−1) showed a non-toxic, protective effect against lym-
phocyte cultures without exhibiting clastogenic activity compared to controls. Furthermore,
S. nigra treatment reduced by 0.7 ± 0.02% (Cramer’s V = 0.058; p < 0.2) the deviation
rate, demonstrating adequate antigenicity in lymphocytes. Genotoxic mutations induced
at cytogenetic levels represent the first step toward carcinogenesis. Understanding the
chromosomal mechanisms of action of S. nigra suggests a stable antimutagenic potential
associated with an enhanced cytoprotective activity [44], minimizing the GM side effects.
Furthermore, elderberry flavonoids modulate specific and non-specific immune responses
and cytoprotective effects in various acute renal injury models [45].

Mice pretreatment with 120 mg kg−1 S. nigra extract reduced the initial degenera-
tive, hypermeric, inflammatory, and vascular changes in renal tissue after GM intoxica-
tion [12,46]. This is consistent with reduced serum levels at Cre, gamma-GT, urea, and
Cys C and significantly improved renal function, eliciting a reduction in the chain inflam-
matory response. S. nigra extract reduced the extracellular matrix and cell proliferation
by reducing fibrotic areas in the renal cortex and medulla. Herbal antioxidants reduced
GM accumulation by direct GM cytotoxicity mitigation, collagen reduction, suppression
of vasoconstriction, and antioxidant–anti-inflammatory action [45]. This motivated us to
conduct MCs density, taking into account their role in GM-accumulated fibrosis and to
clarify the modulated S. nigra effect. S. nigra administration alone or in a GM + S. nigra
combination statistically significantly ameliorates MCs and collagen deposition in the renal
cortex (fourfold) and medulla and terminates renal fibrotic, probably by redox-modulative
mechanism. Several studies reported that S. nigra exerts enhanced antioxidant activity
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even in patients with idiopathic nephrolithiasis without altering urine pH or H+ concentra-
tions [47].

GM increases connective tissue volume and renal fibrosis by increasing TGF-β produc-
tion, myofibroblast activation, and epithelial–myofibroblast transdifferentiation. Fibroblast
TGF-β receptors activate both the Smad pathway and fibroblast collagen expression [48,49]
and induce an increased amount of detectable MCs-TGF-β in the initial phase [50] under
GM nephrotoxicity. MCs influence fibroblast activity by releasing TGF-β1 and TNF-α
mediators [51,52]. The present study reports that S. nigra extract directly suppresses the
initial phase of GM nephrotoxicity and renal inflammatory response, reducing TGF-β1
and TNF-α by inactivating MCs and collagen proliferation. Similarly, the C-6 ring struc-
ture of flavonoids has been reported to inhibit the expression of TGFβ/Smad and TNF-α
and regulate collagen synthesis. The flavonoid ring structure suppresses the free radical
overexpression [52], and matrix deposition is terminated. Together, rutin, epicatechin, and
quartzetin have been shown to reduce •O2

−, H2O2, OH•, and ONOO− cascade in the
mitochondrial respiratory chain by enzyme reactivation and fibrotic deactivation. However,
flavonoid-containing extracts of S. nigra restored TGF-β1, TNF-α, IL-6, serum urea, and
Cre [53] to controls through appropriate antioxidant modulation after renal GM disor-
ders [54].

This study focused on identifying the possible mechanisms of S. nigra actions on the
transmembrane tubular protein KIM-1 responsible for proximal tubular injury [55] and
5-MSL conjugating albumin accounts for conformational changes in –SH in the albumin
molecule and remodeling of protein oxidation [56]. GM treatment significantly increased
renal KIM-1 expression and structurally changed -SH albumin groups, consistent with
previous studies [27,55]. Interestingly, S. nigra treatment attenuated KIM-1 expression
and protein oxidation to levels comparable to the controls. Acute kidney injuries are
alleviated by herbal nutrients through suppressed KIM-1 [57,58] in animals. S. nigra
extract exhibits a protective effect in kidney injuries [57,58] due to its high protein levels
and seven essential amino acids [32,33,43,54], which probably directly inhibits the •O2

−,
H2O2, and HO• production and regulates albumin oxidation [43,59]. In parallel, the
urinary albumin–creatinine ratio is reduced by attenuating proximal tubular injury and
renal fibrosis [60,61]. Probably, S. nigra promotes the quinones production and ability
to form irreversible complexes with proteins (adhesins), i.e., alters the cellular membrane
potential (hyperpolarization) and modulates immune decrease in KIM-1, Cys C, and TNF-α
in kidneys [61,62]. Seven-day oral exposure to S. nigra extract resulted in changes in redox
homeostasis, enhanced antioxidant response to increased lipid peroxidation, and inhibition
of oxidized albumin -SH groups (cysteine residues), suggesting renal mitochondrial and
cytoplasmic H2O2 detoxification [60,62]. Lee et al. [63] proved that elderberry extract
containing flavonoids and phytochemicals acts as an intracellular antioxidant, protecting
proteins and enzymes from H2O2-induced ROS and oxidative stress.

Oxidative stress disrupts endogenous and exogenous homeostasis, which is critical in
GM-induced renal pathogenesis. Free radicals promote lipid peroxidation in the kidneys,
trigger pro-inflammatory pathways, and activate cytokines [10,11,24]. The fact that in the
GM-treated group, the MDA and ROS products were almost two-fold increased, but SOD,
CAT, and GPx1 enzymes were two times decreased is another sign of GSH depletion and
nephrotoxicity activation. Our findings are consistent with previous studies [7,24,63]. In
contrast, 120 mg kg−1 protection with S. nigra extract, both alone and in the GM + S. nigra
combination, changes hyperpolarization and restores antioxidant homeostasis after a possi-
ble respiratory chain reversal to controls. S. nigra extract has metal-chelating properties and
prevents the initiation of •OH− radicals, resulting in the termination of membrane lipids
and DNA fragmentation [7,64]. Therefore, S. nigra restores SOD, CAT, and GSH enzymes
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by further activating GPx1, leading to H2O2 and lipid peroxide (L-OOH) detoxification.
Additionally, extract limits the hydroperoxide synthesis from fatty acids, which allows for
the restoration of renal anti-lipid peroxidation and GSH inhibition, even at the peroxisomal
level [24,65,66]. S. nigra extract containing flavonoids activates a compensatory reaction
of the body’s antioxidant defense and improves redox homeostasis by directly mitigating
renal toxicity [66–68] and fibrotic [69,70].

Exogenous cell-permeable spin probes based on aminoxyl, nitronylnitroxide, or hy-
droxylamine radicals (CPTIO.K, CMH) permit ROS and RNS determination and directly
reflect differences in redox status in vivo [71]. Redox-sensitive agents are reduced to the
corresponding diamagnetic forms and act as catalysts in the disposal of renal NO• to
the formation of an imino–nitroxide radical or the dismutation of renal •O2

− to H2O2

and O2 [72,73]. In this context, GM penetrates the membrane by an oxygen-dependent
transport mechanism [74] and reduces NO bioavailability in the renal cortex and medulla
in harmony with upregulated KIM-1, CysC, and TNF-α activations [75]. Whereas S. nigra
extract (120 mg kg−1) alleviated GM production of NO• and •O2

− by reducing radicals
and normalizing renal cytosolic and mitochondrial SOD and GSH deficits. The extract
containing rutin, epigallocatechin, and quercetin prevents the •O2

− transformation into
ONOO¯ and •OH radicals, simultaneously restoring the function of NO• and NO as a
signaling molecule regulating blood flow in the renal cortex. Likewise, S. nigra stimulates
SOD synthesis [24–26] and inhibits the xanthine oxidase enzyme [9,67]. Protection (7 days)
with the lyophilized extract shows significant catalysis of the •O2

− and NO• into ONOO¯
radicals by reducing renal stress, followed by an antigen-specific immune response that acti-
vates the mitochondrial respiratory chain and reduces GM-induced collagen deposition and
cell-mediated fibrotic [13,67]. In accordance, Olas et al. [62] demonstrated that flavonoids,
isoflavonoids, and saponins promoted renal blood flow, increased glomerular filtration,
and remodulated the Th2 immune response by reducing the expression of inducible NO
synthase (iNOS). Therefore, the quinones production by S. nigra [73] alters the renal •O2

−

and •NO redox-microenvironment by promoting modifications in redox-sensitive amino
acids (proline), regulating the selectivity for -SH modifications, i.e., ending renal stress
deposition [74,76–78] (Scheme 1).

GM-induced oxidative stress acutely activates NF-κB pathways, which suppress
mitochondrial biogenesis and stimulate the release of pro-inflammatory cytokines in the
peripheral renal tissues. PGC-1α, as a coactivator protein, controls mitochondrial biogenesis
and adaptive cellular thermogenesis, directly characterizing renal disorders [79].

The presented results show that GM presumably increased the production of IL-1β, IL-
6, and IL-10, including TNF-α and IFN-γ. Early-phase inflammatory mediators significantly
upregulated PGC-1α. Therefore, 7-day GM accumulation inhibited PGC-1α levels and
impaired mitochondrial synthesis, which exacerbated renal stress and promoted nephrotox-
icity progression [79,80]. We hypothesize that treatment with lyophilized extract of S. nigra
regulates Nrf2 signaling pathways by provoking an antioxidant response (SOD, CAT, GPx1,
including localized peroxidase and oxidoreductases) against acute-phase inflammatory me-
diators. In a compositional ratio containing polyphenols, S. nigra extract has the potential
to suppress ROS, NO•, and •O2

− generations directly related to lipid peroxidation, i.e.,
sharply reduces electron transport [81], in the mitochondrial membrane and increases the
PGC-1α activity [82]. Presumably, the 7-day-lasting antioxidant compensatory response of
S. nigra, containing rutin, epigallocatechin, and quercetin, stimulates Th1/Th2 response
and protects renal mitochondrial dysfunction by improving renal tubular dynamics and
arresting the fibrosis process [83]. Moreover, the potential of the synergistic phytochem-
icals rutin, epigallocatechin, quercetin, and myricetin in S. nigra extract is expressed in
the complete antagonism/HO•, •O2

−, NO• scavenging, inhibition of lipid peroxidation,
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and complete oxidative stress modulation. It has been shown that the synergistic phyto-
chemicals functionally have a ROS/PNH scavenging capacity 100–300 times higher than
the mannitol [10,84]. S. nigra extract disrupts extracellular matrix components that allow
for full penetration of antibiotics, enhance their effect, and simultaneously prevent the
accumulation of acute renal dysfunction.
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Scheme 1. Possible mechanism of (1) GM-binding in 30S–50S ribosomal subunit and penetra-
tion by oxygen-dependent transport mechanism, hyperpolarization, and renal dysfunction [1,74];
(2) oral 7-day antioxidant compensatory response of S. nigra-lyophilized extract (containing rutin,
epigallocatechin, and quercetin) in stimulation of renal mitochondrial dysfunction, improving renal
tubular dynamics and halting the fibrotic process through complete ROS, NO•, and •O2

− generation
neutralization and OS modulation [81–83]. As a sequence, S. nigra-lyophilized extract increases GM
uptake and decreases GM nephrotoxicity. Abbreviations: GM, gentamycin; S. nigra; OS, oxidative
stress; ROS, NO•, and •O2

−, free radicals.

4. Materials and Methods
4.1. S. nigra Fruit Phytochemical Analysis and Ultrasound-Assisted Extraction

The S. nigra fruits were collected from Alino, Bulgaria, 2023 g. The juice was obtained
by manual pressing and straining through sterile gauze and ultrasonically sonicated. For
ultrasonic treatment (80 kHz), a bath with a piezoceramic emitter (Elmasonic P 30 H, Elma,
Singen, Germany; volume 2.8 L; frequency 37–80 kHz; 22 ◦C) was used. The extract was
filtered through cotton and a 0.8 µm nylon-membrane syringe filter (Acrodisc, Sigma-
Aldrich, Sofia, Bulgaria). It has been established that with prolonged storage and an
increase in pH and temperature, the anthocyanin content decreased. S. nigra fruits juice
was subjected to lyophilization (300 rpm; 10 min; layer thickness 1 cm; −45 ◦C) and
vacuum-sublimation drying in a TG 16.50 installation (Hochvacuum, Munich, Germany)
for 24 ± 1 h [85,86].

4.2. High-Performance Liquid Chromatography (HPLC—DAD)

The high-performance liquid chromatography method (1100 HPLC, Agilent Tech-
nologies, Santa Clara, CA, USA) with a HPLC–DAD diode detector (G1315B, Agilent



Pharmaceuticals 2025, 18, 85 18 of 26

Technologies, Santa Clara, CA, USA) operated by an HP Chemstation was used to de-
termine 9 components: (+)-epicatechin gallate; (-)-catechin; (-) epigallocatechin; rutin;
quercetin; myricetin; kaempferol; and gallic and vanillic acids [87]. The optimized method
was performed at 278 nm–368 nm wavelength, with a C18 reversed-phase column (Puro-
spher star, Hiber RT 125-4; RP18, Purospher star, Merck, Sofia, Bulgaria). The new HPLC
method is specific, sensitive, linear, and precise [88]. Separation was performed using a
linear gradient elution program with 0.1% TCA (A) and 100% acetonitrile (B) for 40 min.
The gradient elution program started with 5% B, 15% B at 16.5 min, 33% B at 22.5 min,
100% B at 30.5 min, and 5% B at 35 min until the 40th equilibration. The flow rate was
1.6 µL min−1, and the column temperature was −25 ◦C. The injection volume was set to
30 µL, and the DAD acquisition peaks were monitored simultaneously in the 200 ÷ 400 nm
range. HPLC–DAD calibration curves were obtained by plotting the limits of the peak
area against the standard concentrations (µg mL−1). All samples were filtered through a
0.46 µm acrodisc syringe filter before injection. Calibration curves consisted of five points,
from 20 to 100 µg mL−1, for all analytics.

4.3. Antioxidant Ability In Vitro

The antioxidant ability of S. nigra-lyophilized extract was determined using a DPPH
(2.2-diphenyl-1-picrylhydrazyl) assay, measured by the Electron Paramagnetic Resonance
(EPR-X-Bruker-EMX-micro) spectroscopy [89]. Briefly, 80 mM DPPH ethanol solution was ho-
mogenized and incubated with S. nigra-lyophilized extract for 5 min (5 mM, 0.5 mg mL−1).
The 0.20 µL was transferred in the Micro-221-EPR cavity at 23 ◦C. DPPH-H/R genera-
tion started immediately. The results were presented as % and recalculated as µg/DPPH
radicals possible to be neutralized by 1 mL extract.

4.4. Lymphocyte Cultures and Chromosome Aberration Assay

Lymphocyte cultures were prepared from peripheral vein blood in heparin (30 IU mL−1)
of healthy, nonsmoking, non-drinking (female), and drug-free donors aged 38 to 43 years.

Lymphocyte cultures (10 mL) were cultured in sterile flasks containing RPMI-1640 cell
medium, 3 mL heat-inactivated normal calf serum, 0.2 mL re-substituted PHA (2%), and an-
tibiotics (penicillin-gentamicin, 100 U mL−1: 50 µg mL−1) at 37 ◦C for 47 h. S. nigra extract
(50 µL, 120 mg kg−1) was added to the lymphocytes at 37 ◦C for 47 h under aerobic condi-
tions. After 47 h, the cells were incubated with colchicine solution (0.5 g mL−1) according
to the classical culture protocol for 60 min. Finally, the culture medium was treated with
0.075 M KCl and 4 × methanol/acetic acid (3:1, v/v) at 23 ◦C, and the clastogenic effect was
examined using the method of Evans, 1984 [90]. Microscopy of chromosomal metaphases
stained with 10% Giemsa (Merck); chromosome aberration analysis was at ×1000 mag-
nification (Olympus BX-41, Hamburg, Germany), with a minimum of 100 metaphases
(Scheme 2). Untreated lymphocyte samples were used as controls. All procedures followed
the Declaration of Helsinki, approved by the Ethics and Academic Integrity Committee
of Medical Faculty, Trakia University (No. 7.5.1 OD_4.1.5.9/protocol 18/15.04.2022). The
lymphocyte cultures were stored in the Laboratory for Chromosomal Diagnostics and
Genetic Monitoring and Screening in the Department of Molecular Biology, Immunology,
and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora, Bulgaria. All
donors were informed about this experimental procedure and signed written informed
consent forms.
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4.5. Nephrotoxicity Induction and Therapeutic Protection

Thirty-six Balb/c mice (37–39.4 g; 9 weeks old, Neurobiology Institute, Slivnitsa,
Bulgaria) used in this study were kept in the animal care facility by the Bioethics Committee,
TrU, Stara Zagora, Bulgaria. Animals were maintained at a controlled temperature (21 ◦C),
humidity (52%), and 12 h dark/light 10-day cycle of adaptive feeding and acclimatization,
with a license (317/6000-0333/09.12.2021) following Directive 2010/63/EU on the animals’
protection used for experimental and other scientific work.

The GM-induced nephrotoxicity murine model was developed by a daily IP injection
of 200 mg kg−1 day−1 for 10 consecutive days, according to previous models [7,15,24]. The
GM inducement caused oxidative stress disturbances and generated a redox–homeostatic
imbalance cascade, directly affecting the proximal renal tubules.

The S. nigra fruit extract has shown pharmacological properties at doses ranging
from 15 to 600 mg kg−1 [91]. Its pharmacological effects may be different depending on
the concentration of flavonoid and polyphenolic components. Based on our preliminary
in vitro studies [92], the robust antioxidant activity and cytoprotective effect, 120 mg kg−1 S.
nigra fruit extract was used in the present study.

The animals were divided into four groups (n = 6, Scheme 2), according to the (1) con-
trols; basal diet (19.6% protein, 4.03% fat, 6.89% fiber, 10.71% moisture; 8.97% ash) was
injected IP with 1 mL ice-cold NaCl isotonic solution (0.9%); (2) S. nigra extract only
administered per os (PO) (120 mg kg−1 day−1 bw); (3) GM only; GM was injected IP
(200 mg kg−1 day−1 b) to induce acute nephrotoxicity; (4) GM + S. nigra therapy;
GM was injected IP (200 mg kg−1 bw) and received PO S. nigra-lyophilized extract
(120 mg kg−1 day−1 bw) after 2 h.

The S. nigra extract was mixed in cold NaCl isotonic solution (0.9%). The animals’ phys-
iological state and behavior were monitored daily. Twenty-four hours after the last dose,
the mice were weighed and anesthetized by IP injection (Nembutal, 50 mg kg−1). Blood
samples collected by intra-cardiac technique in serum tubes were centrifuged (4000 rpm,
10 min, 4 ◦C) and analyzed immediately. The mice’s kidneys were weighed, and the left
kidney was fixed in 10% formalin buffer for histological analysis. The right kidney was
placed in ice-cold 0.05 M PBS (pH 7.5; 4 ◦C), homogenized individually, and examined.
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4.6. Histopathological Analysis

The left kidney tissue was embedded in paraffin after being perfused, dehydrated by
a graded series of ethanol, and fixed in 10% phosphate-buffered formalin for 24 h. The
kidney tissues, cut into sections (5 µm), were mounted on gelatin-coated slides, xylene
deparaffinized, and 0.1% hematoxylin–eosin (H&E) stain to distinguish significant kidney
injuries such as tubular necrosis, fibrosis, inflammatory cells infiltration, tubular dilation,
and cast formation.

4.7. Mast Cell (MCs) Number and Collagen Fiber Thickness (CFT)

Next, left kidney tissues were embedded in paraffin after being fixed in 10% formalde-
hyde/aqueous solution (7 days) and dehydrated. The kidney tissues were cut into slices
(5 µm) and stained by toluidine blue (MCs differentiation) and Azan technique (collagen
fibrils differentiation and indicating interstitial fibrosis). In short, paraffin sections were
xylene deparaffinized, hydrated (ethanol 100%, ethanol 96%, ethanol, ethanol 80%, ethanol
70%), and washed in water. Toluidine blue (0.1%) in McLivane’s buffer (pH = 3) was
used for metachromatic MCs [93], and the Azan stain was used for collagen fiber (CFT)
visualization stained with blue, erythrocytes with orange, and muscle cells and nuclei with
red [94].

4.8. Renal Hydroxyproline (HYP) u Protein Oxidation Analysis

Renal hydroxyproline analysis (at 110 ◦C for 24 h; hydrolysis with 6N HCl, incubation
at 110 ◦C), used to quantify fibrotic changes, was determined at 550 nm absorption by the
Woessner method [57] and expressed as µg/HYR per gram kidney tissue.

The protein oxidation analysis (albumin injuries) in kidneys was assessed by the EPR
method in vivo, using spin-conjugation with spin-trap 3-maleimido proxyl (5-MSL). Right
kidney tissue (10 mg) was mixed with 20 mM 5-MSL dissolved in 900 µL dimethyl sulfoxide
(DMSO). The mixture was centrifuged (1000 rpm; 15 min) at 4 ◦C. The protein/albumin
conformational (-SH) changes were recorded in triplicate, with the following parameters:
3505 G; 6.42 MW power; 5 G amplitude; 12 modulations, in random units, by the method
described earlier [58].

4.9. Renal Functional Markers

To monitor renal functional damages, commercial kits to measure the kidney injury
molecule-1 (KIM-1; No. MBS175125), cystatin C (CysC), glutathione-S-transferase (GST),
and serum levels of gamma-glutamyl-transpeptidase (gamma-GT), creatinine (Cre), and
urea (U) were used.

4.10. Oxidative Stress Analysis in Renal Tissue

To monitor renal antioxidant enzymes activities, catalase (CAT; No. ab83464), su-
peroxide dismutase (SOD; No. ab65354), glutathione (GSH; No. ab142044), glutathione
peroxidase 1 (GPx1; No. ab41464), as well as the pro-oxidants such as malondialdehyde
(MDA; No. ab233471) were investigated by ELISA kits.

The ROS production: A total of 100 µL homogenized kidney tissue was mixed with
900 µL (50 mM) N-tert-butyl-alpha-phenylnitrone (PBN) dissolved in DMSO. The mixture
was centrifuged at 4000× g, 10 min at 4 ◦C, by [95].

The nitric oxide (•NO) generation relative to the spin–adduct formed between the
spintrap carboxy 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl (CPTIO.K) and •NO in kidney
tissue were based on established EPR methods [96,97]. Briefly, 50 µM CPTIO.K was
dissolved in a mixture of 50 mM Tris (pH = 7.5), and DMSO (9:1) was centrifuged at
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4000× g for 10 min at 4 ◦C. Then, 100 µL kidney samples were mixed in 100 µL CPTIO.K,
and spin–adducts were recorded.

The superoxide (•O2
−) concentration in kidney tissue was determined relative to

the spin–adduct formed using the spin-trap CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-
tetramethylpyrrolidine), based on methods [98,99]. For this purpose, 30 µL kidney tissue
was activated in 30 µL CMH (1:1) on an ice bath, and after 5 min incubation, it was prepared.
All EPR analyses were performed with fivefold measurement in recorded EPR spectra, with
the following characteristics: 3503–3515 G center field; 6.42–20.00 mW microwave power;
5–10 G modulation per sample, and the results are presented in arbitrary units (a.u.)

4.11. Pro-Collagen I Alpha 1, Heme Oxygenase-1, and Pro-Inflammatory Cytokines in
Renal Tissue

The PGC-1, the pro-inflammatory IL-1, IL-10, IL-6, ITF-α, and TNF-γ cytokines were
measured with ELISA kits.

4.12. Statistical Methods

The aberrance and aberrant cell degrees were processed by one-way ANOVA followed
by χ2-Cramer’s V test (GraphPadPrism 6/Windows; GraphPad Software, Inc., USA). Data
are presented as mean ± SD; p < 0.05 was considered statistically significant.

The mast cell (MCs) density (number/field of view × 400) was determined on a ×200
microscopic field with an area of 0.163 mm2 in kidney sections of each animal, using a light
research microscope (LEIKA DM 1000, Leica Camera AG, Wetzlar, Germany) equipped with
a digital camera (LEIKA DFC 290). The data were processed by one-way ANOVA followed
by Tukey Kramer’s test (GraphPadPrism 6 for Windows; GraphPad Software, Inc., USA).
Data are presented as mean ± SD; p < 0.05 was considered statistically significant. The
remaining statistical analyses were performed using Excel version 10.0 software, StaSoft,
Inc., San Diego, CA, USA, and presented as mean ± SD.

The EPR processing was performed using WIN-EPR SimFonia 1.2/6130860 software.
Statistical analysis was performed using one-way ANOVA and Student’s t-test to determine
differences; p < 0.05 was considered statistically significant.

4.13. Limits of This Study

The results related to our study clearly show that the lyophilized extract of S. nigra
attenuated renal dysfunction caused by GM application. However, some limitations should
be noted that could contribute to the overall significance of the extract on GM-induced
nephrotoxicity. Due to ethical considerations, the number of animals studied per group was
six, which was sufficient to reveal the most significant differences but might be insufficient
to establish additional correlations between some parameters. The results indicate the
involvement of some biomarkers, like KIM-1 and PGC-1α, in the process, but further
investigation of markers through pathway-specific inhibitors or genetic approaches would
better clarify their role. In the present study, in vivo GM activity was not investigated by the
co-administration of S. nigra extract, which would also reveal additional information about
the antimicrobial properties of the combination therapy. Further studies are needed to
identify possible doses that have a beneficial effect on kidney intoxication with longer-term
use in protecting ferroptosis processes and the molecular study of DNA damage.

5. Conclusions
The present study highlights the anti-inflammatory potential of S. nigra-lyophilized

fruit extract (120 mg mL−1) by reducing fibrotic cell proliferation under GM-induced
nephrotoxicity. The antioxidant protection is mediated by a reduction in cytokine expression
and albumin modulation. The proposed mechanisms of action of S. nigra are directly related
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to the redox modulation of ROS, NO•, and •O2
−, which facilitate mitochondrial antioxidant

and anti-inflammatory properties, associated with the cytoprotection of GM-induced OS
and reduced hyperpolarization. In conclusion, we encourage S. nigra use as a traditional
supplement to restore antioxidant enzymes in patients with renal injury undergoing GM
treatment without compromising the efficacy of bactericidal therapy.
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